82. Simplify
logab+logba+2⋅logaba⋅(logab)3 81. Simplify
1+2log2loga−a1+log4a21−1 80. Simplify
⎝⎛blogalog100a⋅alogblog100b⎠⎞2logab(a+b) 79. Simplify (logab+logba+2)(logab−logabb)logba−1
78. Prove that logc+ba+logc−ba=2logc+ba⋅logc−ba given that a2+b2=c2 where a>0,b>0,c>0
77. Prove that blogac=clogab
76. Express
logabb3a in terms of
k given that
logaba=k where
a>0,
b>0 and
ab=1 75. Express logcab in terms of p, q and r given that logak=p, logbk=q and logck=r where k=1
74. Express log2360 in terms of a and b given that log320=a and log315=b
73. Express log3528 in terms of a and b given that log147=a and log145=b